Osteoblast response to rest periods during bioreactor culture of collagen-glycosaminoglycan scaffolds.

نویسندگان

  • Niamh A Plunkett
  • Sonia Partap
  • Fergal J O'Brien
چکیده

Flow perfusion bioreactors have been shown to enhance fluid transport and improve cell viability throughout tissue-engineered bone constructs. Furthermore, osteoblasts have been shown to be stimulated by flow during bioreactor culture, although the optimum flow regime to promote an osteogenic response has yet to be found. One problem is that bone cells lose their ability to respond to stimulation; however, mechanosensitivity can be restored by introducing resting periods between bouts of loading. The aim of this study was to analyze the effect of rest-insertion on the response of osteoblasts seeded on collagen-glycosaminoglycan scaffolds in a flow perfusion bioreactor over culture periods up to 14 days. Short-term rests of 5, 10, or 15 s and long-term rests of 7 h were incorporated into stimulation patterns. Cell distribution was enhanced in all flow groups, whereas static culture controls exhibited encapsulation. Cyclooxygenase-2 expression and prostaglandin E(2) levels increased significantly because of bioreactor culture over static controls. Osteopontin expression was significantly higher for the rest-inserted groups than the static control group or steady-flow group. These results indicate that the insertion of resting periods during flow enhances cellular distribution and osteogenic responses on collagen-glycosaminoglycan constructs cultured in a flow perfusion bioreactor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stimulation of osteoblasts using rest periods during bioreactor culture on collagen-glycosaminoglycan scaffolds.

Osteoblasts respond to mechanical signals which play a key role in the formation of bone however, after extended periods of stimulation they become desensitised. Mechanosensitivity has been shown to be restored by the introduction of resting periods between loadings. The aim of this study was to analyse the effect of rest periods on the response of osteoblast-like cells seeded on collagen-glyco...

متن کامل

Three hours of perfusion culture prior to 28 days of static culture, enhances osteogenesis by human cells in a collagen GAG scaffold.

In tissue engineering, bioreactors can be used to aid in the in vitro development of new tissue by providing biochemical and physical regulatory signals to cells and encouraging them to undergo differentiation and/or to produce extracellular matrix prior to in vivo implantation. This study examined the effect of short term flow perfusion bioreactor culture, prior to long-term static culture, on...

متن کامل

Effect of Rotation on Scaffold Motion and Cell Growth in Rotating Bioreactors

Efficient use of different bioreactor designs to improve cell growth in three-dimensional scaffolds requires an understanding of their mechanism of action. To address this for rotating wall vessel bioreactors, fluid and scaffold motion were investigated experimentally at different rotation speeds and vessel fill volumes. Low cost bioreactors with single and dual axis rotation were developed to ...

متن کامل

Culture of equine fibroblast-like synoviocytes on synthetic tissue scaffolds towards meniscal tissue engineering: a preliminary cell-seeding study

Introduction. Tissue engineering is a new methodology for addressing meniscal injury or loss. Synovium may be an ideal source of cells for in vitro meniscal fibrocartilage formation, however, favorable in vitro culture conditions for synovium must be established in order to achieve this goal. The objective of this study was to determine cellularity, cell distribution, and extracellular matrix (...

متن کامل

Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair.

One of the biggest challenges in regenerative medicine is promoting sufficient vascularisation of tissue-engineered constructs. One approach to overcome this challenge is to target the cellular hypoxia inducible factor (HIF-1α) pathway, which responds to low oxygen concentration (hypoxia) and results in the activation of numerous pro-angiogenic genes including vascular endothelial growth factor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tissue engineering. Part A

دوره 16 3  شماره 

صفحات  -

تاریخ انتشار 2010